

- Motivation
- Objectives
- Sources of Uncertainty and Inexactness in Reasoning
  - Incorrect and Incomplete Knowledge
  - Ambiguities
  - Belief and Ignorance
- ◆ Probability Theory
  - Bayesian Networks

- ♦ Certainty Factors
  - Belief and Disbelief
- Dempster-Shafer Theory
   Evidential Reasoning
- Important Concepts and Terms

Reasoning under Uncertainty

Chapter Summary

## Motivation

- reasoning for real-world problems involves missing knowledge, inexact knowledge, inconsistent facts or rules, and other sources of uncertainty
- while traditional logic in principle is capable of capturing and expressing these aspects, it is not very intuitive or practical
  - explicit introduction of predicates or functions
- many expert systems have mechanisms to deal with uncertainty
  - sometimes introduced as ad-hoc measures, lacking a sound foundation

Reasoning under Uncertainty 2

# Objectives

- be familiar with various sources of uncertainty and imprecision in knowledge representation and reasoning
- understand the main approaches to dealing with uncertainty
  - probability theory
    - Bayesian networks
    - \* Dempster-Shafer theory
  - important characteristics of the approaches
  - differences between methods, advantages, disadvantages, performance, typical scenarios
- evaluate the suitability of those approaches
  - application of methods to scenarios or tasks
- apply selected approaches to simple problems

Reasoning under Uncertainty 3

## Introduction

- reasoning under uncertainty and with inexact knowledge
   frequently necessary for real-world problems
- heuristics
  - ways to mimic heuristic knowledge processing
  - methods used by experts
- empirical associations
  - experiential reasoning
  - based on limited observations
- probabilities
  - objective (frequency counting)
  - subjective (human experience )
- reproducibility
- will observations deliver the same results when repeated

## Dealing with Uncertainty

### ♦ expressiveness

- can concepts used by humans be represented adequately?
- ♦ can the confidence of experts in their decisions be expressed?
- comprehensibility
  - representation of uncertainty
  - utilization in reasoning methods
- ♦ correctness
- probabilities
- ♦ adherence to the formal aspects of probability theory
   ♦ relevance ranking
- probabilities don't add up to 1, but the "most likely" result is sufficient
   long inference chains
- ♦ tend to result in extreme (0,1) or not very useful (0.5) results
   ♦ computational complexity
  - feasibility of calculations for practical purposes

Reasoning under Uncertainty 5

## Sources of Uncertainty

#### ♦ data

- + data missing, unreliable, ambiguous,
- representation imprecise, inconsistent, subjective, derived from defaults, ...

#### expert knowledge

- inconsistency between different experts
- plausibility
- "best guess" of experts
- quality
  - causal knowledge
  - deep understanding
  - statistical associations
- observations
- scope
   only current domain, or more general

Reasoning under Uncertainty 6

## Sources of Uncertainty (cont.)

#### knowledge representation

- restricted model of the real system
- limited expressiveness of the representation mechanism
- ♦ inference process
  - deductive
    - the derived result is formally correct, but inappropriate
    - derivation of the result may take very long
  - inductive
    - \* new conclusions are not well-founded
      - not enough samples
      - \* samples are not representative
  - unsound reasoning methods
    - \* induction, non-monotonic, default reasoning

Reasoning under Uncertainty 7

## Uncertainty in Individual Rules

- ♦ errors
  - domain errors
  - representation errors
  - inappropriate application of the rule
- ◆likelihood of evidence
  - for each premise
  - ♦ for the conclusion
  - combination of evidence from multiple premises

## Uncertainty and Multiple Rules

#### ♦ conflict resolution

- + if multiple rules are applicable, which one is selected
  - \* explicit priorities, provided by domain experts
  - \* implicit priorities derived from rule properties
    - \* specificity of patterns, ordering of patterns creation time of rules, most recent usage.

#### ♦ compatibility

- contradictions between rules
- subsumption
  - one rule is a more general version of another one
- redundancy
- missing rules
- data fusion
  - integration of data from multiple sources

Reasoning under Uncertainty 9

## **Basics of Probability Theory**

- mathematical approach for processing uncertain information
- ♦ sample space set
- $X = \{x_1, x_2, ..., x_n\}$
- collection of all possible events
- can be discrete or continuous
- probability number P(x<sub>i</sub>) reflects the likelihood of an event x<sub>i</sub> to occur
  - ♦ non-negative value in [0,1]
  - total probability of the sample space (sum of probabilities) is 1
  - + for mutually exclusive events, the probability for at least one of them is the sum of their individual probabilities
  - experimental probability
  - \* based on the frequency of events
  - subjective probability based on expert assessment

Reasoning under Uncertainty 10

# **Compound Probabilities**

- + describes independent events
- do not affect each other in any way
- joint probability of two independent events A and B
  - $P(A \cap B)$  $= n(A \cap B) / n(s) = P(A) * P(B)$
- where n(S) is the number of elements in S
- union probability of two independent events A and B  $P(A \cup B)$

=  $P(A) + P(B) - P(A \cap B)$ = P(A) + P(B) - P(A) \* P(B)

## **Conditional Probabilities**

- ♦ describes dependent events
- affect each other in some way conditional probability
  - of event A given that event B has already occurred **P(A|B)** = P(A ∩ B) / P(B)

Reasoning under Uncertainty 11

## Advantages and Problems: Probabilities

- advantages
  - formal foundation
  - reflection of reality (a posteriori)
- problems
- may be inappropriate
  - \* the future is not always similar to the past
  - inexact or incorrect
  - \* especially for subjective probabilities
  - ignorance
    - probabilities must be assigned even if no information is available \* assigns an equal amount of probability to all such items

#### non-local reasoning

- requires the consideration of all available evidence, not only from the rules currently under consideration
- no compositionality
- \* complex statements with conditional dependencies can not be decomposed into independent parts





# Advantages and Problems of **Bayesian Reasoning**

- advantages
  - sound theoretical foundation
  - well-defined semantics for decision making
- problems
  - requires large amounts of probability data
  - subjective evidence may not be reliable
  - independence of evidences assumption often not valid
  - + relationship between hypothesis and evidence is reduced to a number

  - explanations for the user difficult
  - high computational overhead

Reasoning under Uncertainty 15

# **Certainty Factors**

- denotes the belief in a hypothesis H given that some pieces of evidence E are observed
- no statements about the belief means that no evidence is present
- in contrast to probabilities, Bayes' method
- works reasonably well with partial evidence
  - separation of belief, disbelief, ignorance
- shares some foundations with Dempster-Shafer (DS) theory, but is more practical
  - introduced in an ad-hoc way in MYCIN
  - ♦ later mapped to DS theory

# Belief and Disbelief

### measure of belief

- ♦ degree to which hypothesis H is supported by evidence E
- ♦ MB(H,E) = 1 if P(H) =1
  - (P(H|E) P(H)) / (1- P(H)) otherwise

#### measure of disbelief

♦ degree to which doubt in hypothesis H is supported by evidence E

Reasoning under Uncertainty 17

- ♦ MD(H,E) = 1 if P(H) =0
  - (P(H) P(H|E)) / P(H)) otherwise

## **Certainty Factor**

#### ♦ certainty factor CF

- ranges between -1 (denial of the hypothesis H) and +1 (confirmation of H)
- allows the ranking of hypotheses
- ♦ difference between belief and disbelief CF (H,E) = MB(H,E) - MD (H,E)
- combining antecedent evidence
  - use of premises with less than absolute confidence  $E_1 \wedge E_2 = min(CF(H, E_1), CF(H, E_2))$ 
    - - $\neg E = \neg CF(H, E)$

Reasoning under Uncertainty 18

# $\begin{array}{l} \textbf{Combining Certainty Factors} \\ \textbf{ ecretainty factors that support the same conclusion} \\ \textbf{ eseveral rules can lead to the same conclusion} \\ \textbf{ eseveral rules can lead to the same conclusion} \\ \textbf{ applied incrementally as new evidence becomes available} \\ \\ \textbf{ CF}_{rev}(CF_{old}, CF_{new}) = & \\ CF_{old} + CF_{new}(1 - CF_{old}) & \text{ if both } > 0 \\ CF_{old} + CF_{new}(1 + CF_{old}) & \text{ if both } < 0 \\ CF_{old} + CF_{new} / (1 - min(|CF_{old}|, |CF_{new}|)) & \text{ if one } < 0 \\ \end{array} \\ \end{array}$

## **Characteristics of Certainty Factors**

| Aspect          | Probability   | MB | MD | CF |
|-----------------|---------------|----|----|----|
| Certainly true  | P(H E) = 1    | 1  | 0  | 1  |
| Certainly false | P(¬H E) = 1   | 0  | 1  | -1 |
| No evidence     | P(H E) = P(H) | 0  | 0  | 0  |

#### Ranges

| measure of belief    | 0 ≤ <b>MB</b> ≤ 1   |
|----------------------|---------------------|
| measure of disbelief | 0 ≤ <b>MD</b> ≤ 1   |
| certainty factor     | -1 ≤ <b>CF</b> ≤ +1 |
|                      |                     |

## Advantages and Problems of Certainty Factors

#### Advantages

#### simple implementation

- reasonable modeling of human experts' belief
   expression of belief and disbelief
- successful applications for certain problem classes
- evidence relatively easy to gather
   no statistical base required

#### Problems

- partially ad hoc approach
  - \* theoretical foundation through Dempster-Shafer theory was developed later
- combination of non-independent evidence unsatisfactory
- new knowledge may require changes in the certainty factors of existing knowledge
- certainty factors can become the opposite of conditional probabilities for certain cases
- not suitable for long inference chains

Reasoning under Uncertainty 21

## Dempster-Shafer Theory

#### mathematical theory of evidence

- uncertainty is modeled through a range of probabilities
   instead of a single number indicating a probability
- sound theoretical foundation
- allows distinction between belief, disbelief, ignorance (nonbelief)
- certainty factors are a special case of DS theory

Reasoning under Uncertainty 22

# DS Theory Notation

- environment  $\Theta = \{O_1, O_2, ..., O_n\}$
- ◆ set of objects O<sub>i</sub> that are of interest
  - $\Theta = \{O_1, O_2, ..., O_n\}$
- frame of discernment FD
  - an environment whose elements may be possible answers
    only one answer is the correct one
- mass probability function m
  - assigns a value from [0,1] to every item in the frame of discernment
  - describes the degree of belief in analogy to the mass of a physical
- object
   mass probability m(A)
  - portion of the total mass probability that is assigned to a specific element A of FD

Reasoning under Uncertainty 23

# Belief and Certainty

- ♦ belief Bel(A) in a set A
  - sum of the mass probabilities of all the proper subsets of A
     all the mass that supports A
  - likelihood that one of its members is the conclusion
  - ♦ also called support function
- plausibility Pls(A)
  - maximum belief of A
  - upper bound for the range of belief
- certainty Cer(A)
  - interval [Bel(A), Pls(A)]
    - also called evidential interval
  - expresses the range of belief



## Differences Probabilities - DF Theory

| Aspect                            | Probabilities     | Dempster-Shafer          |
|-----------------------------------|-------------------|--------------------------|
| Aggregate Sum                     | $\sum_{i} Pi = 1$ | m(Θ) ≤ 1                 |
| Subset $X \subseteq Y$            | $P(X) \le P(Y)$   | m(X) > m(Y) allowed      |
| relationship X, ⊸X<br>(ignorance) | P(X) + P (¬X) = 1 | $m(X) + m(\neg X) \le 1$ |

Reasoning under Uncertainty 26

Reasoning under Uncertainty 28

# **Evidential Reasoning**

- extension of DS theory that deals with uncertain, imprecise, and possibly inaccurate knowledge
- also uses evidential intervals to express the confidence in a statement
  - lower bound is called support (Spt) in evidential reasoning, and belief (Bel) in Dempster-Shafer theory
  - ◆ upper bound is plausibility (Pls)

# **Evidential Intervals**

| Meaning                          | Evidential Interval              |
|----------------------------------|----------------------------------|
| Completely true                  | [1,1]                            |
| Completely false                 | [0,0]                            |
| Completely ignorant              | [0,1]                            |
| Tends to support                 | [Bel,1] where 0 < Bel < 1        |
| Tends to refute                  | [0,PIS] where 0 < PIs < 1        |
| Tends to both support and refute | [Bel,PIs] where 0 < Bel ≤ PIs< 1 |

**Bel**: belief; lower bound of the evidential interval **Pls**: plausibility; upper bound

# Advantages and Problems of Dempster-Shafer

#### ♦ advantages

- ◆ clear, rigorous foundation
- ability to express confidence through intervals \* certainty about certainty
- proper treatment of ignorance
- ♦ problems
  - non-intuitive determination of mass probability
  - very high computational overhead
  - may produce counterintuitive results due to normalization
  - usability somewhat unclear

Reasoning under Uncertainty 29

# Summary Reasoning and Uncertainty

- many practical tasks require reasoning under uncertainty
  - missing, inexact, inconsistent knowledge
- variations of probability theory are often combined with rule-based approaches
- works reasonably well for many practical problems
- Bayesian networks have gained some prominence
  - improved methods, sufficient computational power

Reasoning under Uncertainty 30

# Important Concepts and Terms

- Bayesian networks
- ♦ belief
- ♦ certainty factor
- compound probability
- conditional probability
- Dempster-Shafer theory
- disbelief
- evidential reasoning
- ♦ inference
- ♦ inference mechanism
- ♦ ignorance

- knowledge
- knowledge representation
- mass function
- probability
- reasoning
- ♦ rule ♦ sample
- ♦ set
- uncertainty